Chandrasekhar worked out how big a star could be and still support itself against its own gravity after it had used up all its fuel. The idea was this: when the star becomes small, the matter particles get very near each other, and so according to the Pauli exclusion principle, they must have very different velocities. This makes them move away from each other and so tends to make the star expand. A star can therefore maintain itself at a constant radius by a balance between the attraction of gravity and the repulsion that arises from the exclusion principle, just as earlier in its life gravity was balanced by the heat.
Chandrasekhar realized, however, that there is a limit to the repulsion that the exclusion principle can provide. The theory of relativity limits the maximum difference in the velocities of the matter particles in the star to the speed of light. This means that when the star got sufficiently dense the repulsion caused by the Exclusion Principle would be less than the attraction of Gravity. Chandrasekhar calculated that a cold star of more than about one and a half times the mass of the sun would not be able to support itself against its own Gravity (This mass is now known as the Chandrasekhar Limit). This had serious implications for the ultimate fate of massive stars. If a star's mass is less than the Chandrasekhar limit, it can eventually stop contracting and settle down to a possible final state as a white dwarf with a radius of a few thousand miles and a density of hundreds of tons per cubic inch. A white dwarf is supported by the exclusion principle repulsion between the electrons in its matter.
Landau a Russian Scientist pointed out that there was another possible final state for a star, also with a limiting mass of about one or two times the mass of the sun but much smaller even than a white dwarf. These stars would be supported by the exclusion principle repulsion between neutrons and protons, rather than between electrons. They were therefore called neutron stars. They would have a radius of only ten miles or so and a density of hundreds of millions of tons per cubic inch. Stars with masses above the Chandrasekhar limit, on the other hand, have a big problem when they come to the end of their fuel. In some cases they may explode or manage to throw off enough matter to reduce their mass below the limit and so avoid catastrophic gravitational collapse, but it is difficult to believe that this always happens, no matter how big the star is. How would it know that it had to weight? And even if every star managed to lose enough mass to avoid collapse, what would happen if you added more mass to a white dwarf or neutron star to take it over the limit? Would it collapse to infinite density? Eddington (one of the first ones who understood the Einstein's theory of Relativity) was shocked by that implication, and he refused to believe Chandrasekhar's result.
Chandrasekhar had shown that the exclusion principle could not halt the collapse of a star more massive than the Chandrasekhar limit, but the problem of understanding what would happen to such a star, according to general relativity, was first solved by a young American, Robert Oppenheimer, in 1939. The picture that we now have from Oppenheimer's work is as follows: the gravitational field of the star changes the paths of light rays in space-time from what they would have been had the star not been present. The light cones, which indicate the paths followed in space and time by flashes of light emitted from their tips, are bent slightly inward near the surface of the star. This can be seen in the bending of light from distant stars observed during an eclipse of the sun. As the star contracts, the gravitational field at its surface gets stronger and the light cones get bent inward more. This makes it more difficult for light from the star to escape, and the light appears dimmer and redder to an observer at a distance.
Eventually, when the star has shrunk to a certain critical radius, the gravitational field at the surface becomes so strong that the light cones are bent inward so much that light can no longer escape. According to the theory of relativity, nothing can travel faster than light. Thus if light cannot escape, neither can anything else; everything is dragged back by the gravitational field. So one has a set of events, a region of space-time, from which it is not possible to escape to reach a distant observer. This region is what we now call a Black hole. Its boundary is called the event horizon and it coincides with the paths of Light Rays that just fail to escape from the Black Hole.
Chandrasekhar realized, however, that there is a limit to the repulsion that the exclusion principle can provide. The theory of relativity limits the maximum difference in the velocities of the matter particles in the star to the speed of light. This means that when the star got sufficiently dense the repulsion caused by the Exclusion Principle would be less than the attraction of Gravity. Chandrasekhar calculated that a cold star of more than about one and a half times the mass of the sun would not be able to support itself against its own Gravity (This mass is now known as the Chandrasekhar Limit). This had serious implications for the ultimate fate of massive stars. If a star's mass is less than the Chandrasekhar limit, it can eventually stop contracting and settle down to a possible final state as a white dwarf with a radius of a few thousand miles and a density of hundreds of tons per cubic inch. A white dwarf is supported by the exclusion principle repulsion between the electrons in its matter.
Landau a Russian Scientist pointed out that there was another possible final state for a star, also with a limiting mass of about one or two times the mass of the sun but much smaller even than a white dwarf. These stars would be supported by the exclusion principle repulsion between neutrons and protons, rather than between electrons. They were therefore called neutron stars. They would have a radius of only ten miles or so and a density of hundreds of millions of tons per cubic inch. Stars with masses above the Chandrasekhar limit, on the other hand, have a big problem when they come to the end of their fuel. In some cases they may explode or manage to throw off enough matter to reduce their mass below the limit and so avoid catastrophic gravitational collapse, but it is difficult to believe that this always happens, no matter how big the star is. How would it know that it had to weight? And even if every star managed to lose enough mass to avoid collapse, what would happen if you added more mass to a white dwarf or neutron star to take it over the limit? Would it collapse to infinite density? Eddington (one of the first ones who understood the Einstein's theory of Relativity) was shocked by that implication, and he refused to believe Chandrasekhar's result.
Chandrasekhar had shown that the exclusion principle could not halt the collapse of a star more massive than the Chandrasekhar limit, but the problem of understanding what would happen to such a star, according to general relativity, was first solved by a young American, Robert Oppenheimer, in 1939. The picture that we now have from Oppenheimer's work is as follows: the gravitational field of the star changes the paths of light rays in space-time from what they would have been had the star not been present. The light cones, which indicate the paths followed in space and time by flashes of light emitted from their tips, are bent slightly inward near the surface of the star. This can be seen in the bending of light from distant stars observed during an eclipse of the sun. As the star contracts, the gravitational field at its surface gets stronger and the light cones get bent inward more. This makes it more difficult for light from the star to escape, and the light appears dimmer and redder to an observer at a distance.
Eventually, when the star has shrunk to a certain critical radius, the gravitational field at the surface becomes so strong that the light cones are bent inward so much that light can no longer escape. According to the theory of relativity, nothing can travel faster than light. Thus if light cannot escape, neither can anything else; everything is dragged back by the gravitational field. So one has a set of events, a region of space-time, from which it is not possible to escape to reach a distant observer. This region is what we now call a Black hole. Its boundary is called the event horizon and it coincides with the paths of Light Rays that just fail to escape from the Black Hole.
0 Comments